Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 441
1.
Eur J Paediatr Neurol ; 49: 60-65, 2024 Mar.
Article En | MEDLINE | ID: mdl-38377647

Fatty acid oxidation (FAO) disorders are autosomal recessive genetic disorders affecting either the transport or the oxidation of fatty acids. Acute symptoms arise during prolonged fasting, intercurrent infections, or intense physical activity. Metabolic crises are characterized by alteration of consciousness, hypoglycemic coma, hepatomegaly, cardiomegaly, arrhythmias, rhabdomyolysis, and can lead to death. In this retrospective and multicentric study, the data of 54 patients with FAO disorders were collected. Overall, 35 patients (64.8%) were diagnosed after newborn screening (NBS), 17 patients on clinical presentation (31.5%), and two patients after family screening (3.7%). Deficiencies identified included medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (75.9%), very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (11.1%), long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency (3.7%), mitochondrial trifunctional protein (MTP) deficiency (1.8%), and carnitine palmitoyltransferase 2 (CPT 2) deficiency (7.4%). The NBS results of 25 patients were reviewed and the neurological outcome of this population was compared with that of the patients who were diagnosed on clinical presentation. This article sought to provide a comprehensive overview of how NBS implementation in Southern Belgium has dramatically improved the neurological outcome of patients with FAO disorders by preventing metabolic crises and death. Further investigations are needed to better understand the physiopathology of long-term complications in order to improve the quality of life of patients and to ensure optimal management.


Acyl-CoA Dehydrogenase/deficiency , Cardiomyopathies , Carnitine O-Palmitoyltransferase/deficiency , Lipid Metabolism, Inborn Errors , Metabolism, Inborn Errors , Mitochondrial Trifunctional Protein/deficiency , Neonatal Screening , Rhabdomyolysis , Humans , Infant, Newborn , Retrospective Studies , Male , Female , Neonatal Screening/methods , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/complications , Belgium/epidemiology , Infant , Congenital Bone Marrow Failure Syndromes/complications , Congenital Bone Marrow Failure Syndromes/diagnosis , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Fatty Acids/metabolism , Child, Preschool , Muscular Diseases/diagnosis , Child , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/complications , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/complications , Nervous System Diseases/etiology , Nervous System Diseases/diagnosis
2.
Neurotherapeutics ; 21(1): e00304, 2024 Jan.
Article En | MEDLINE | ID: mdl-38241155

This paper provides an overview of the different types of mitochondrial myopathies (MM), associated phenotypes, genotypes as well as a practical clinical approach towards disease diagnosis, surveillance, and management. nDNA-related MM are more common in pediatric-onset disease whilst mtDNA-related MMs are more frequent in adults. Genotype-phenotype correlation in MM is challenging due to clinical and genetic heterogeneity. The multisystemic nature of many MMs adds to the diagnostic challenge. Diagnostic approaches utilizing genetic sequencing with next generation sequencing approaches such as gene panel, exome and genome sequencing are available. This aids molecular diagnosis, heteroplasmy detection in MM patients and furthers knowledge of known mitochondrial genes. Precise disease diagnosis can end the diagnostic odyssey for patients, avoid unnecessary testing, provide prognosis, facilitate anticipatory management, and enable access to available therapies or clinical trials. Adjunctive tests such as functional and exercise testing could aid surveillance of MM patients. Management requires a multi-disciplinary approach, systemic screening for comorbidities, cofactor supplementation, avoidance of substances that inhibit the respiratory chain and exercise training. This update of the current understanding on MMs provides practical perspectives on current diagnostic and management approaches for this complex group of disorders.


Mitochondrial Diseases , Mitochondrial Myopathies , Humans , Child , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Mitochondrial Myopathies/therapy , Mitochondria , High-Throughput Nucleotide Sequencing , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy
3.
BMC Cardiovasc Disord ; 23(1): 464, 2023 09 15.
Article En | MEDLINE | ID: mdl-37715114

BACKGROUND: Mitochondrial myopathies (MMs) are a group of multi-system diseases caused by abnormalities in mitochondrial DNA (mtDNA) or mutations of nuclear DNA (nDNA). The diagnosis of mitochondrial myopathy (MM) is reliant on the combination of history and physical examination, muscle biopsy, histochemical studies, and next-generation sequencing. Patients with MMs have diverse clinical manifestations. In the contemporary literature, there is a paucity of reports on cardiac structure and function in this rare disease. We report a Chinese man with MM accompanied with both acute right heart failure and left ventricular hypertrophy. CASE PRESENTATION: A 49-year-old man presented with clinical features suggestive of MM, i.e., ophthalmoparesis, weakness of the pharyngeal and extremity muscles, and respiratory muscles which gradually progressed to respiratory insufficiency. He had a family history of mitochondrial myopathy. He had increased levels of serum creatine kinase and lactate. Muscle biopsy of left lateral thigh revealed 8% ragged red fibers (RRF) and 42% COX-negative fibers. Gene sequencing revealed a novel heterozygote TK2 variant (NM_001172644: c.584T>C, p.Leu195Pro) and another heterozygous variant (NM_004614.4:c.156+958G>A; rs1965661603) in the intron of TK2 gene. Based on these findings, we diagnosed the patient as a case of MM. Echocardiography revealed right heart enlargement, pulmonary hypertension, left ventricular hypertrophy, and thickening of the main pulmonary artery and its branches. The patient received non-invasive ventilation and coenzyme Q10 (CoQ10). The cardiac structure and function were restored at 1-month follow-up. CONCLUSIONS: This is the first report of reversible cardiac function impairment and left ventricular hypertrophy in a case of adult-onset MM, nocturnal hypoxia is a potential mechanism for left ventricular hypertrophy in patients with MM.


Hypertrophy, Left Ventricular , Mitochondrial Myopathies , Adult , Male , Humans , Middle Aged , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/genetics , East Asian People , Heart , Mitochondrial Myopathies/complications , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Cardiomegaly
4.
J Prim Care Community Health ; 14: 21501319231172697, 2023.
Article En | MEDLINE | ID: mdl-37162197

Bilateral lower extremity weakness and swelling can have several causes. Although often underdiagnosed, mitochondrial myopathy is more prevalent in the general population than more commonly suspected diseases, such as Guillain-Barre syndrome. The clinical manifestations of mitochondrial disease can be broadly classified into 3 categories: chronic progressive external ophthalmoplegia, skeletal muscle-central nervous system syndromes, or pure myopathy. Cardiac abnormalities occur in 30% to 32% of cases, mostly in the form of hypertrophic cardiomyopathy, dilated cardiomyopathy, or conduction abnormalities. We report a case of a 21-year-old student who developed bilateral lower limb weakness, pain, and swelling diagnosed with mitochondrial myopathy on muscle biopsy. Initial laboratory tests revealed elevated creatinine kinase, brain natriuretic peptide, troponin, myoglobin, and lactic acid and reduced serum bicarbonate. Cardiac workup revealed systolic heart failure with a reduced ejection fraction. Endomyocardial biopsy revealed punctate foci of lymphocytic myocarditis. However, cardiac magnetic resonance imaging did not reveal either myocarditis or an infiltrative cardiac disease. An extensive autoimmune and infection work-up was negative. A muscle biopsy from the patient's rectus femoris revealed scattered ragged-blue fibers (stained with NADH dehydrogenase), scattered ragged-red fibers on modified Gomori trichrome stain, and cytochrome-c oxidase negative fibers with increased perimysial and endomysial connective tissue, consistent with active and chronic primary mitochondrial myopathy. The patient was treated successfully with furosemide, metoprolol, and methylprednisolone. Adult-onset mitochondrial myopathy is a rare clinical disorder, and our experience stresses the importance of using an inter-disciplinary team approach to diagnose uncommon clinical disorders with widely variable multisystem involvement.


Mitochondrial Myopathies , Myocarditis , Ophthalmoplegia, Chronic Progressive External , Adult , Male , Humans , Young Adult , Myocarditis/pathology , Mitochondrial Myopathies/complications , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/pathology , Muscle, Skeletal/pathology , Ophthalmoplegia, Chronic Progressive External/diagnosis , Ophthalmoplegia, Chronic Progressive External/pathology , Lower Extremity/pathology
5.
Muscle Nerve ; 68(3): 250-256, 2023 09.
Article En | MEDLINE | ID: mdl-37226557

Metabolic myopathies are a set of rare inborn errors of metabolism leading to disruption in energy production. Relevant to skeletal muscle, glycogen storage disease and fatty acid oxidation defects can lead to exercise intolerance, rhabdomyolysis, and weakness in children and adults, distinct from the severe forms that involve multiple-organ systems. These nonspecific, dynamic symptoms along with conditions that mimic metabolic myopathies can make diagnosis challenging. Clinicians can shorten the time to diagnosis by recognizing the typical clinical phenotypes and performing next generation sequencing. With improved access and affordability of molecular testing, clinicians need to be well-versed in resolving variants of uncertain significance relevant to metabolic myopathies. Once identified, patients can improve quality of life, safely engage in exercise, and reduce episodes of rhabdomyolysis by modifying diet and lifestyle habits.


Metabolism, Inborn Errors , Mitochondrial Myopathies , Muscular Diseases , Rhabdomyolysis , Humans , Quality of Life , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Muscular Diseases/therapy , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/metabolism , Muscle, Skeletal/metabolism , Mitochondrial Myopathies/diagnosis
6.
BMC Pulm Med ; 23(1): 104, 2023 Mar 29.
Article En | MEDLINE | ID: mdl-36991405

BACKGROUND: Primary muscular disorders (metabolic myopathies, including mitochondrial disorders) are a rare cause of dyspnea. We report a case of dyspnea caused by a mitochondrial disorder with a pattern of clinical findings that can be classified in the known pathologies of mitochondrial deletion syndrome. CASE PRESENTATION: The patient presented to us at 29 years of age, having had tachycardia, dyspnea, and functional impairment since childhood. She had been diagnosed with bronchial asthma and mild left ventricular hypertrophy and treated accordingly, but her symptoms had worsened. After more than 20 years of progressive physical and social limitations was a mitochondrial disease suspected in the exercise testing. We performed cardiopulmonary exercise testing (CPET) with right heart catheterization showed typical signs of mitochondrial myopathy. Genetic testing confirmed the presence of a ~ 13 kb deletion in mitochondrial DNA from the muscle. The patient was treated with dietary supplements for 1 year. In the course of time, the patient gave birth to a healthy child, which is developing normally. CONCLUSION: CPET and lung function data over 5 years demonstrated stable disease. We conclude that CPET and lung function analysis should be used consistently to evaluate the cause of dyspnea and for long-term observation.


Dyspnea , Mitochondrial Myopathies , Humans , Female , Child , Exercise Test , Mitochondrial Myopathies/complications , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Mitochondria , Syndrome
7.
Neurol India ; 71(6): 1192-1196, 2023.
Article En | MEDLINE | ID: mdl-38174457

Objectives: Clinical spectrum of mitochondrial myopathy extends beyond chronic progressive external ophthalmoplegia (CPEO). While information on encephalomyopathies is abundant, clinical data on predominant myopathic presentation of mitochondrial disorders are lacking. Materials and Methods: Clinical, electrophysiological, biochemical, and follow-up data of patients with predominant myopathic presentation and muscle biopsy confirmed primary mitochondrial myopathy was obtained. We excluded known syndromes of mitochondrial cytopathies and encephalomyopathies. Results: Among 16 patients, 7 had CPEO, 4 had CPEO with limb-girdle muscle weakness (LGMW), and 5 had isolated LGMW. Systemic features included seizures with photosensitivity (n = 3), diabetes (n = 1), cardiomyopathy (n = 1), and sensorineural hearing loss (n = 1) and were more common in isolated LGMW. Elevated serum creatine kinase (CK) and lactate levels and electromyography (EMG) myopathic potentials were more frequent with LGMW. During follow-up, LGMW had more severe progression of weakness. Conclusion: We identified three subsets of mitochondrial myopathy with distinct clinical features and evolutionary patterns. Isolated LGMW was seen in 30% of patients and would represent severe end of the spectrum.


Kearns-Sayre Syndrome , Mitochondrial Myopathies , Ophthalmoplegia, Chronic Progressive External , Humans , Mitochondrial Myopathies/diagnosis , Electromyography , Biopsy
8.
Continuum (Minneap Minn) ; 28(6): 1752-1777, 2022 12 01.
Article En | MEDLINE | ID: mdl-36537979

PURPOSE OF REVIEW: Metabolic myopathies are disorders that affect skeletal muscle substrate oxidation. Although some drugs and hormones can affect metabolism in skeletal muscle, this review will focus on the genetic metabolic myopathies. RECENT FINDINGS: Impairments in glycogenolysis/glycolysis (glycogen storage disease), fatty acid transport/oxidation (fatty acid oxidation defects), and mitochondrial metabolism (mitochondrial myopathies) represent most metabolic myopathies; however, they often overlap clinically with structural genetic myopathies, referred to as pseudometabolic myopathies. Although metabolic myopathies can present in the neonatal period with hypotonia, hypoglycemia, and encephalopathy, most cases present clinically in children or young adults with exercise intolerance, rhabdomyolysis, and weakness. In general, the glycogen storage diseases manifest during brief bouts of high-intensity exercise; in contrast, fatty acid oxidation defects and mitochondrial myopathies usually manifest during longer-duration endurance-type activities, often with fasting or other metabolic stressors (eg, surgery, fever). The neurologic examination is often normal between events (except in the pseudometabolic myopathies) and evaluation requires one or more of the following tests: exercise stress testing, blood (eg, creatine kinase, acylcarnitine profile, lactate, amino acids), urine (eg, organic acids, myoglobin), muscle biopsy (eg, histology, ultrastructure, enzyme testing), and targeted (specific gene) or untargeted (myopathy panels) genetic tests. SUMMARY: Definitive identification of a specific metabolic myopathy often leads to specific interventions, including lifestyle, exercise, and nutritional modifications; cofactor treatments; accurate genetic counseling; avoidance of specific triggers; and rapid treatment of rhabdomyolysis.


Glycogen Storage Disease , Metabolism, Inborn Errors , Mitochondrial Myopathies , Muscular Diseases , Rhabdomyolysis , Young Adult , Infant, Newborn , Child , Humans , Muscular Diseases/diagnosis , Muscular Diseases/therapy , Muscular Diseases/genetics , Metabolism, Inborn Errors/diagnosis , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Mitochondrial Myopathies/therapy , Rhabdomyolysis/diagnosis , Rhabdomyolysis/therapy , Rhabdomyolysis/genetics , Fatty Acids/metabolism
9.
Trials ; 23(1): 789, 2022 Sep 20.
Article En | MEDLINE | ID: mdl-36127727

BACKGROUND: Mitochondrial disease is a heterogenous group of rare, complex neurometabolic disorders. Despite their individual rarity, collectively mitochondrial diseases represent the most common cause of inherited metabolic disorders in the UK; they affect 1 in every 4300 individuals, up to 15,000 adults (and a similar number of children) in the UK. Mitochondrial disease manifests multisystem and isolated organ involvement, commonly affecting those tissues with high energy demands, such as skeletal muscle. Myopathy manifesting as fatigue, muscle weakness and exercise intolerance is common and debilitating in patients with mitochondrial disease. Currently, there are no effective licensed treatments and consequently, there is an urgent clinical need to find an effective drug therapy. AIM: To investigate the efficacy of 12-week treatment with acipimox on the adenosine triphosphate (ATP) content of skeletal muscle in patients with mitochondrial disease and myopathy. METHODS: AIMM is a single-centre, double blind, placebo-controlled, adaptive designed trial, evaluating the efficacy of 12 weeks' administration of acipimox on skeletal muscle ATP content in patients with mitochondrial myopathy. Eligible patients will receive the trial investigational medicinal product (IMP), either acipimox or matched placebo. Participants will also be prescribed low dose aspirin as a non-investigational medical product (nIMP) in order to protect the blinding of the treatment assignment. Eighty to 120 participants will be recruited as required, with an interim analysis for sample size re-estimation and futility assessment being undertaken once the primary outcome for 50 participants has been obtained. Randomisation will be on a 1:1 basis, stratified by Fatigue Impact Scale (FIS) (dichotomised as < 40, ≥ 40). Participants will take part in the trial for up to 20 weeks, from screening visits through to follow-up at 16 weeks post randomisation. The primary outcome of change in ATP content in skeletal muscle and secondary outcomes relating to quality of life, perceived fatigue, disease burden, limb function, balance and walking, skeletal muscle analysis and symptom-limited cardiopulmonary fitness (optional) will be assessed between baseline and 12 weeks. DISCUSSION: The AIMM trial will investigate the effect of acipimox on modulating muscle ATP content and whether it can be repurposed as a new treatment for mitochondrial disease with myopathy. TRIAL REGISTRATION: EudraCT2018-002721-29 . Registered on 24 December 2018, ISRCTN 12895613. Registered on 03 January 2019, https://www.isrctn.com/search?q=aimm.


Mitochondrial Myopathies , Muscular Diseases , Adult , Child , Humans , Adenosine Triphosphate , Aspirin/therapeutic use , Fatigue , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/drug therapy , Pyrazines , Quality of Life , Randomized Controlled Trials as Topic
10.
J Neurol ; 269(12): 6555-6565, 2022 Dec.
Article En | MEDLINE | ID: mdl-35980466

OBJECTIVES: To assess natural history and 12-month change of a series of scales and functional outcome measures in a cohort of 117 patients with primary mitochondrial myopathy (PMM). METHODS: Twelve months follow-up data of 117 patients with PMM were collected. We analysed the 6-min walk test (6MWT), timed up-and-go test (× 3) (3TUG), five-times sit-to-stand test (5XSST), timed water swallow test (TWST), and test of masticating and swallowing solids (TOMASS) as functional outcome measures; the Fatigue Severity Scale and West Haven-Yale Multidimensional pain inventory as patient-reported outcome measures. PMM patients were divided into three phenotypic categories: mitochondrial myopathy (MiMy) without extraocular muscles involvement, pure chronic progressive external ophthalmoplegia (PEO) and PEO&MiMy. As 6MWT is recognized to have significant test-retest variability, we calculated MCID (minimal clinically important difference) as one third of baseline 6 min walking distance (6MWD) standard deviation. RESULTS: At 12-month follow-up, 3TUG, 5XSST and FSS were stable, while TWST and the perceived pain severity (WHYMPI) worsened. 6MWD significantly increased in the entire cohort, especially in the higher percentiles and in PEO patients, while was substantially stable in the lower percentile (< 408 m) and MiMy patients. This increase in 6MWD was considered not significant, as inferior to MCID (33.3 m). NMDAS total score showed a slight but significant decline at 12 months (0.9 point). The perceived pain severity significantly worsened. Patients with PEO performed better in functional measures than patients with PEO&MiMy or MiMy, and had lower values of NMDAS. CONCLUSIONS: PMM patients showed a slow global decline valued by NMDAS at 12 months; 6MWT was a more reliable measurement below 408 m, substantially stable at 12 months. PEO patients had better motor performance and lower NMDAS than PEO&MiMy and MiMy also at 12 months of follow-up.


Mitochondrial Myopathies , Ophthalmoplegia, Chronic Progressive External , Humans , Follow-Up Studies , Walk Test/methods , Mitochondrial Myopathies/complications , Mitochondrial Myopathies/diagnosis , Time Factors , Walking
11.
Indian J Pathol Microbiol ; 65(Supplement): S277-S290, 2022 May.
Article En | MEDLINE | ID: mdl-35562160

Metabolic myopathies are a diverse group of genetic disorders that result in impaired energy production. They are individually rare and several have received the 'orphan disorder' status. However, collectively they constitute a relatively common group of disorders that affect not only the skeletal muscle but also the heart, liver, and brain among others. Mitochondrial disorders, with a frequency of 1/8000 population, are the commonest cause of metabolic myopathies. Three main groups that cause metabolic myopathy are glycogen storage disorders (GSD), fatty acid oxidation defects (FAOD), and mitochondrial myopathies. Clinically, patients present with varied ages at onset and neuromuscular features. While newborns and infants typically present with hypotonia and multisystem involvement chiefly affecting the liver, heart, kidney, and brain, patients with onset later in life present with exercise intolerance with or without progressive muscle weakness and myoglobinuria. In general, GSDs result in high-intensity exercise intolerance while, FAODs, and mitochondrial myopathies predominantly manifest during endurance-type activity, fasting, or metabolically stressful conditions. Evaluation of these patients comprises a meticulous clinical examination and a battery of investigations which includes- exercise stress testing, metabolic and biochemical screening, electrophysiological studies, neuro-imaging, muscle biopsy, and molecular genetics. Accurate and early detection of metabolic myopathies allows timely counseling to prevent metabolic crises and helps in therapeutic interventions. This review summarizes the clinical features, diagnostic tests, pathological features, treatment and presents an algorithm to diagnose these three main groups of disorders.


Metabolism, Inborn Errors , Mitochondrial Myopathies , Muscular Diseases , Algorithms , Heart , Humans , Infant, Newborn , Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Mitochondrial Myopathies/complications , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Muscular Diseases/etiology , Muscular Diseases/genetics
12.
Am J Med Genet A ; 188(7): 2226-2230, 2022 07.
Article En | MEDLINE | ID: mdl-35393742

Myopathy, lactic acidosis, and sideroblastic anemia 2 (MLASA2) is an autosomal recessive mitochondrial disorder caused by pathogenic variants in YARS2. YARS2 variants confer heterogeneous phenotypes ranging from the full MLASA syndrome to a clinically unaffected state. Symptom onset is most common in the first decade of life but can occur in adulthood and has been reported following intercurrent illness. Early death can result from respiratory muscle weakness and cardiomyopathy. We report a case of MLASA2 with compound heterozygous YARS2 pathogenic variants; a known pathogenic nonsense variant [NM_001040436.3:c.98C>A (p.Ser33Ter)] and a likely pathogenic missense variant not previously associated with disease [NM_001040436.3:c.948G>T (p.Arg316Ser)]. The proband initially presented with a relatively mild phenotype of myopathy and lactic acidosis. During pregnancy, anemia emerged as an additional feature and in the postpartum period she experienced severe decompensation of cardiorespiratory function. This is the first reported case of pregnancy-related complications in a patient with YARS2-related mitochondrial disease. This case highlights the need for caution and careful counseling when considering pregnancy in mitochondrial disease, due to the risk of disease exacerbation and pregnancy complications.


Acidosis, Lactic , Anemia, Sideroblastic , Mitochondrial Myopathies , Muscular Diseases , Tyrosine-tRNA Ligase , Acidosis, Lactic/diagnosis , Acidosis, Lactic/genetics , Adult , Anemia, Sideroblastic/complications , Anemia, Sideroblastic/diagnosis , Anemia, Sideroblastic/genetics , Female , Humans , Mitochondrial Myopathies/complications , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Muscular Diseases/genetics , Pregnancy , Tyrosine-tRNA Ligase/genetics
13.
J Inherit Metab Dis ; 45(4): 819-831, 2022 07.
Article En | MEDLINE | ID: mdl-35403730

Mitochondrial trifunctional protein (MTP) is involved in long-chain fatty acid ß-oxidation (lcFAO). Deficiency of one or more of the enzyme activities as catalyzed by MTP causes generalized MTP deficiency (MTPD), long-chain hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), or long-chain ketoacyl-CoA thiolase deficiency (LCKATD). When genetic variants result in thermo-sensitive enzymes, increased body temperature (e.g. fever) can reduce enzyme activity and be a risk factor for clinical decompensation. This is the first description of five patients with a thermo-sensitive MTP deficiency. Clinical and genetic information was obtained from clinical files. Measurement of LCHAD and LCKAT activities, lcFAO-flux studies and palmitate loading tests were performed in skin fibroblasts cultured at 37°C and 40°C. In all patients (four MTPD, one LCKATD), disease manifested during childhood (manifestation age: 2-10 years) with myopathic symptoms triggered by fever or exercise. In four patients, signs of retinopathy or neuropathy were present. Plasma long-chain acylcarnitines were normal or slightly increased. HADHB variants were identified (at age: 6-18 years) by whole exome sequencing or gene panel analyses. At 37°C, LCHAD and LCKAT activities were mildly impaired and lcFAO-fluxes were normal. Remarkably, enzyme activities and lcFAO-fluxes were markedly diminished at 40°C. Preventive (dietary) measures improved symptoms for most. In conclusion, all patients with thermo-sensitive MTP deficiency had a long diagnostic trajectory and both genetic and enzymatic testing were required for diagnosis. The frequent absence of characteristic acylcarnitine abnormalities poses a risk for a diagnostic delay. Given the positive treatment effects, upfront genetic screening may be beneficial to enhance early recognition.


Lipid Metabolism, Inborn Errors , Mitochondrial Myopathies , Muscular Diseases , 3-Hydroxyacyl CoA Dehydrogenases , Adolescent , Cardiomyopathies , Child , Child, Preschool , Coenzyme A , Delayed Diagnosis , Fatty Acids/metabolism , Humans , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/metabolism , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Mitochondrial Trifunctional Protein/deficiency , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Nervous System Diseases , Rhabdomyolysis
14.
BMC Nephrol ; 23(1): 87, 2022 03 04.
Article En | MEDLINE | ID: mdl-35246049

BACKGROUND: MtDNA 3243 A > G mutation leads to mitochondrial myopathies with predominant hyperlactatemia. Given the ubiquitous nature of mitochondria, cellular dysfunction can also appear in tissues with high metabolic turnover; thus, there can be cardiac, digestive, ophthalmologic, and kidney complications. MtDNA 3243 A > G mutation has been shown to be with renal involvement in the previous cases of which are FSGS and tubularinterstitial nephritis. CASE PRESENTATION: We report a case of patient who had the mitochondrial myopathy with mitochondrial DNA (mtDNA) 3243 A > G mutation diagnosed membranous nephropathy by kidney biopsy, which was never reported before. Our patient was found to have chest tightness and shortness of breath with hyperlactatemia and was diagnosed mitochondrial myopathy with mtDNA 3243 A > G mutation 11 months ago. Acute kidney injury occurred with hyperuricemia (urid acid 1011umol/L) which may be associated with mtDNA mutation. Since then, persistent proteinuria was also found and the 24-h urine protein quantitative was around 2 g. Kidney biopsy was performed and the result was consistent with membranous nephropathy, with abnormal mitochondria seen in renal tubules by electron microscopy. CONCLUSIONS: Patients with mitochondrial myopathy could also have renal presentation of membranous nephropathy. Patients with mtDNA mutation may have various renal manifestations so that more attention should be paid on their kidneys.


Glomerulonephritis, Membranous , Hyperlactatemia , Mitochondrial Myopathies , DNA, Mitochondrial/genetics , Female , Glomerulonephritis, Membranous/complications , Glomerulonephritis, Membranous/diagnosis , Glomerulonephritis, Membranous/genetics , Humans , Hyperlactatemia/complications , Hyperlactatemia/pathology , Kidney/pathology , Male , Mitochondrial Myopathies/complications , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics
15.
Nutrients ; 13(9)2021 Aug 24.
Article En | MEDLINE | ID: mdl-34578803

Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD/MTPD) and medium chain acyl-CoA dehydrogenase deficiency (MCADD) were included in the expanded neonatal screening program (ENBS) in Czechia in 2009, allowing for the presymptomatic diagnosis and nutritional management of these patients. The aim of our study was to assess the nationwide impact of ENBS on clinical outcome. This retrospective study analysed acute events and chronic complications and their severity in pre-ENBS and post-ENBS cohorts. In total, 28 children (12 before, 16 after ENBS) were diagnosed with LCHADD/MTPD (incidence 0.8/100,000 before and 1.2/100,000 after ENBS). In the subgroup detected by ENBS, a significantly longer interval from birth to first acute encephalopathy was observed. In addition, improvement in neuropathy and cardiomyopathy (although statistically non-significant) was demonstrated in the post-ENBS subgroup. In the MCADD cohort, we included 69 patients (15 before, 54 after ENBS). The estimated incidence rose from 0.7/100,000 before to 4.3/100,000 after ENBS. We confirmed a significant decrease in the number of episodes of acute encephalopathy and lower proportion of intellectual disability after ENBS (p < 0.0001). The genotype-phenotype correlations suggest a new association between homozygosity for the c.1528C > G variant and more severe heart involvement in LCHADD patients.


Acyl-CoA Dehydrogenase/deficiency , Cardiomyopathies/diet therapy , Cardiomyopathies/diagnosis , Lipid Metabolism, Inborn Errors/diet therapy , Lipid Metabolism, Inborn Errors/diagnosis , Mitochondrial Myopathies/diet therapy , Mitochondrial Myopathies/diagnosis , Mitochondrial Trifunctional Protein/deficiency , Neonatal Screening/methods , Nervous System Diseases/diet therapy , Nervous System Diseases/diagnosis , Rhabdomyolysis/diet therapy , Rhabdomyolysis/diagnosis , 3-Hydroxyacyl CoA Dehydrogenases/deficiency , Cardiomyopathies/epidemiology , Carnitine/analogs & derivatives , Carnitine/blood , Child , Child, Preschool , Czech Republic/epidemiology , Female , Humans , Incidence , Infant , Infant, Newborn , Lipid Metabolism, Inborn Errors/epidemiology , Male , Metabolism, Inborn Errors/diagnosis , Mitochondrial Myopathies/epidemiology , Nervous System Diseases/epidemiology , Outcome Assessment, Health Care , Retrospective Studies , Rhabdomyolysis/epidemiology , Severity of Illness Index
16.
Mitochondrion ; 60: 21-26, 2021 09.
Article En | MEDLINE | ID: mdl-34273558

INTRODUCTION/BACKGROUND: Mitochondrial myopathy (MM) encompasses a clinical heterogenous group of patients that can be difficult to diagnose. The aim of this study was to investigate if changes in plasma lactate concentration during a 6-minute submaximal handgrip test (6MHGT) and a 20-minute post-exercise recovery period can be used as a diagnostic test for MM. METHODS: Twenty-nine patients with MM and nineteen healthy controls (HC) performed an intermittent handgrip exercise test at ½ Hz for 6 min at 50% of maximal voluntary contraction force. We calculated the area under the curve (AUC) of change in plasma lactate during exercise and recovery and compared AUC between groups (MM vs. HC, and between MM subgroups based on disease severity). RESULTS: The change in plasma lactate during exercise and recovery was similar in MM and HC (p = 0.65 and p = 0.57) and similar between MM subgroups (p ≥ 0.24). CONCLUSION: Plasma lactate measured during and after a submaximal 6MHGT cannot be used as a diagnostic variable for MM.


Exercise/physiology , Hand Strength/physiology , Lactates/blood , Mitochondrial Myopathies/blood , Mitochondrial Myopathies/diagnosis , Adult , Aged , Area Under Curve , Case-Control Studies , Female , Humans , Male , Middle Aged , Young Adult
18.
J Inherit Metab Dis ; 44(4): 893-902, 2021 07.
Article En | MEDLINE | ID: mdl-33638202

Peripheral neuropathy is a known irreversible long-term complication of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MTPD), two inherited disorders of mitochondrial long-chain fatty acid oxidation. The underlying pathophysiology of neuropathy is still not fully understood. We report electrophysiological studies and neurological findings in a series of 8 LCHAD-deficient and 11 MTP-deficient patients. The median age at time of the study was 8.0 years (0.5-25 years). The overall prevalence of neuropathy was 58% with neuropathic symptoms being slightly more common in MTPD compared to LCHADD (70% vs 50%, respectively). Onset of neuropathy was significantly earlier in MTPD patients compared to LCHADD patients (median age at onset 4.7 vs 15.3 years, respectively, P = .047). In four patients, isolated peripheral neuropathy was the first and only presenting symptom, and in all four the diagnosis was missed by newborn screening. About half of the patients (45.5%) had a sensorimotor neuropathy, while 27.3% showed a pure motor form and another 27.3% an isolated sensory form. Despite early diagnosis by newborn screening and early initiation of therapy, peripheral neuropathy cannot be prevented in all patients with LCHADD/MTPD and has severe impact on the life of affected patients. Electrophysiology classifies LCHADD/MTPD neuropathy as axonal with secondary demyelination. A novel observation is that in patients with acute, fulminant onset of neuropathy, symptoms can be partly reversible. Further studies are needed to elucidate the underlying pathophysiology of axonal damage and possible therapeutic targets.


Cardiomyopathies/complications , Lipid Metabolism, Inborn Errors/complications , Mitochondrial Myopathies/complications , Mitochondrial Trifunctional Protein/deficiency , Nervous System Diseases/complications , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/etiology , Rhabdomyolysis/complications , Adolescent , Adult , Age Factors , Cardiomyopathies/diagnosis , Cardiomyopathies/pathology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/pathology , Male , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/pathology , Nervous System Diseases/diagnosis , Nervous System Diseases/pathology , Peripheral Nervous System Diseases/pathology , Phenotype , Rhabdomyolysis/diagnosis , Rhabdomyolysis/pathology , Young Adult
19.
Ann Clin Transl Neurol ; 8(4): 825-830, 2021 04.
Article En | MEDLINE | ID: mdl-33638621

OBJECTIVE: Mitochondrial DNA mutations are associated with an increased risk of heart disease. Whether an increased prevalence of cardiovascular disease is present in patients presenting with mitochondrial abnormalities on skeletal muscle biopsy remains unknown. This study was designed to determine the prevalence of cardiac conduction disease and structural heart disease in patients presenting with mitochondrial abnormalities on skeletal muscle biopsy. METHODS: This is a retrospective cohort study of 103 patients with mitochondrial abnormalities on skeletal muscle biopsy who were referred for evaluation of muscle weakness at a single tertiary care referral center from 2012 to 2018. Of these patients, 59 (57.3%) had an electrocardiogram available and were evaluated for the presence of conduction disease. An echocardiogram was available in 43 patients (42%) who were evaluated for the presence of structural heart disease. The prevalence of cardiac disease was compared to control cohort populations (Framingham and the Atherosclerosis Risk in Communities, ARIC cohorts). RESULTS: Mitochondrial abnormalities associated with cardiac conduction disease (defined as QRS duration ≥ 120 msec) were present in 8.9%, versus 2.0% (p < 0.001) in the Framingham population and 2.6% (p = 0.003) in the ARIC cohort. LV systolic dysfunction (LVEF ≤ 50%) was present in 11.6%, versus 3.6% (p < 0.01) in the Framingham and 3% (p < 0.01) in the ARIC populations. Left ventricular hypertrophy was present in 28.6%, versus 13.6% (p < 0.02) in the Framingham and 10.4% (p < 0.001) in the ARIC populations. INTERPRETATION: Given the increased prevalence of cardiovascular disease, patients with mitochondrial abnormalities on skeletal muscle biopsy should undergo routine cardiac screening with physical exam, electrocardiography, and cardiac imaging.


DNA, Mitochondrial/genetics , Heart Diseases/diagnosis , Heart Diseases/epidemiology , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/epidemiology , Muscle, Skeletal/pathology , Biopsy , Comorbidity , Electrocardiography , Female , Humans , Male , Middle Aged , Prevalence , Retrospective Studies
20.
Muscle Nerve ; 63(5): 715-723, 2021 05.
Article En | MEDLINE | ID: mdl-33533527

INTRODUCTION: Oxygen uptake efficiency slope (OUES) is a noninvasive cardiopulmonary exercise testing (CPET) measurement based on oxygen uptake (V˙O2 ) and minute ventilation (V˙E) and is a marker of the efficiency of oxygen utilization by the body. However, it has not been studied in mitochondrial disorders. We explored noninvasive CPET parameters, including OUES, as a way to reliably diagnose mitochondrial myopathy. METHODS: We performed cycle ergometer maximal exercise testing on definite and suspected mitochondrial myopathy subjects (MM-D and MM-S) and their age- and sex-matched controls. OUES was corrected for body surface area (OUES/BSA) to eliminate the effect of body size. RESULTS: A total of 40 participants, including 20 MM-D (n = 13; 6 males; aged 14-64 years) and 7 MM-S (5 males, aged 11-30 years) subjects and 20 controls, completed the study. MM-D subjects showed lower aerobic fitness than controls. OUES/BSA was lower in MM-D subjects, suggesting inefficient oxygen utilization. Area under the curve (AUC) and 95% confidence interval (CI) for OUES/BSA (AUC, 0.91; 95% CI, 0.80-1.00), peak V˙O2 percent predicted (AUC, 0.95; 95% CI, 0.86-1.00), and V˙O2 /work slope (AUC, 0.94; 95% CI, 0.85-1.00) showed excellent ability to diagnose mitochondrial myopathy in MM-D subjects. We applied a diagnostic approach based on the parameters just noted to MM-S subjects and their controls and were able to support or disprove the diagnosis of mitochondrial myopathy. DISCUSSION: We proposed and applied an approach based on the aformentioned three CPET parameters to diagnose mitochondrial myopathy reliably and found it to be clinically useful.


Exercise Test/methods , Exercise/physiology , Mitochondrial Myopathies/diagnosis , Oxygen Consumption/physiology , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Mitochondrial Myopathies/physiopathology , Young Adult
...